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OVERVIEW

The figures presented in this report are a subset of those placed on the website
httpq://www.satlab.hawaii.edu/onr/mindoro/wiki/index.Rhp?n=RemoteSensingQbservations.Shipborne
MicrowaveRadar. The features reported there and here are very unusual because backscatter at HH
polarization is much larger than that at VV over long periods of time and space. It is difficult to over
emphasize how unique this observation is. As a rule, VV sea return cross sections are stronger than
those at HH polarization, except perhaps momentarily. This is the first time that such long-lasting
reverse effects have been observed. The observations point the way to a new understanding of low-
grazing angle backscatter at HH polarization, which is important since most ships' radars operate at
this polarization. During the present project, neither sufficient time nor funding was available to fully
investigate either the implications of this type of backscattering or the characteristics of the oceanic
features producing it.

GOALS

The of this project was to survey microwave signatures of oceanographic features near the
Philippine Islands.

APPROACH

Our approach was to mount a dual-polarized, X-band Doppler radar on a ship cruising near the
Philippine Islands to image surface signatures of oceanographic features. We did this while other
investigators collected surface and subsurface data to determine environmental conditions and the
characteristics of these features. By analyzing these data sets together, we could determine how
properties of current gradients, wind, and surface waves affect the observed microwave signatures.

WORK COMPLETED

In late May, 2007, we installed our coherent X-band radar called RiverRad on the RN Melvelle in
Kaohsiung, Taiwan before it set off on a cruise around the Phillipine Islands. The radar was installed
above the bridge with its two parabolic antennas looking broadside, perpendicular to the ship's
heading. One of these antennas operated vertically polarized on both transmit and receive to collect
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VV data; the other collected horizontally polarized, HH data. Figure 1 shows RiverRad on the
Melville. An engineer from APLIJW, Gene Chatham, accompanied the ship on its journey from
Taiwan to Manilla, Phillipines. After that, the radar ran automatically, storing data on surface
roughness and velocity approximately every 30 minutes. Data were collected day and night during the
entire cruise, which lasted from June 6 to July 3, 2007. The data have subsequently been reprocessed
in the laboratory into images of normalized radar cross section and scatterer velocities; they are now
ready for ready for further examination by the project team.

Figure 1. RiverRad mounted on the R/V Melville prior to the Philippine survey cruise. RiverRad's
two parabolic antennas look to the side of the ship, perpendicular to the ship's heading.

RESULTS

Many interesting features were observed in RiverRad's images. In addition to myriad islands and
boats, the images showed some very strong signatures associated with large-scale current gradients.
Figures 2 and 3 show one such feature observed with HH polarization (Figure 2) and VV polarization
(Figure 3). Clearly the signature is much stronger in the HH image than in the VV, a truly unique
observation. This is characteristic of backscatter from strongly breaking waves, indicating that the
current gradients causing the signatures are extremely strong. The identification of breaking waves as
important in providing scatterers is strengthened by the magnitude of the scatterer velocities observed
in the HH image. These range from -4 m/s to +4 m/s or higher. If the scatterers are bound to longer
waves that are breaking, they will move along with these longer waves and therefore will achieve
speeds approaching the phase speed of the wave that is breaking. This is the origin of the large
observed velocities. The fact that the signatures contain mixtures of positive and negative velocities
indicates that the imaged region is one where long waves come from a wide variety of directions.

Features similar to that shown in Figures 2 and 3 were observed in a variety of locations on the
cruise and are documented on the website referenced above. Figure 4 shows the track of the Melville
along with symbols indicating where surface features of current gradients were observed in the
imagery of RiverRad. The majority of these features were seen on the west side of the islands and
tended to concentrate near straits.
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Figure 2. Image of a series of current gradients as observed by RiverRad's HH polarized antenna.
Note that these features are very strong.
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Philippine Cruise - June 6 to July 3, 2007
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Figure 4. Track of the R/V Melville during its survey cruise of the Phillipine Islands from June 6 to
July 3, 2007. The black curve is the outbound leg; the red is the return leg. Symbols: X = strong
surface signatures observed by RiverRad; 0 = weaker signatures seen.



ABSTRACT OF IGARSS 2008 TALK

MEASURING AND MODELING THE NORMALIZED RADAR CROSS
SECTION OF THE SEA FOR BACKSCATTER

William J. Plant, William C. Keller, Kenneth Hayes, Gene Chatham
Applied Physics Laboratory, University of Washington, Seattle, WA, USA

plant,apl.washington.edu

The normalized radar cross section (NRCS) of the sea is usually represented by ao(VV) when
vertical electric fields are used for both transmission and reception and by ao(HH) when the fields are
horizontal. This paper shows that a composite surface-type theory, the multiscale model of Plant
(2002), can explain o(VV) at all incidence angles. The model predicts ao(HH) values that are too low
at incidence angles above 450, however. These types of models always predict co(HH) less than or
equal to yo(VV) for long time averages. Here we report measurements on the ocean at low grazing
angles which show that Yo(HH) can far exceed ao(VV) for long periods of time and large spatial
distances in some situations. These suggest that multiple scattering from dihedral-like surfaces may be
involved in low-grazing-angle HH backscatter.

Recent ship-based measurements using a calibrated, coherent, dual-polarized, X-band radar have
determined the magnitudes of ao(VV) and oo(HH) and their dependence on wind speed and azimuth
angle at grazing angles of one to two degrees. When the ocean surface is disturbed only by wind, the
measurements show that ao (VV) shows wind-speed and azimuth-angle dependences similar to those
at the lower incidence angles used in scatterometry. Furthermore, the multiscale model of ocean
backscatter (Plant, 2002) fits the absolute level, the azimuth angle dependence, and the wind speed
dependence of ao(VV) very well at low grazing angles if shadowing is taken into account. For
Go(HH), the story is very different. At grazing angles of 10 to 20, it is largest looking upwind and
smallest looking downwind. It is always smaller than ao(VV) but is much larger than predicted by the
multiscale model at these angles.

The fact that the multiscale model cannot predict the large values of co(HH) that are observed at
incidence angles above about 450 suggests that scattering processes other than those described by
standard composite surface theory may be important at these angles for HH polarization. Plant (1997)
has suggested that Bragg scattering from bound, tilted rough patches may account for some of the
increase in co(HH) over composite surface theory. However, since this process also increases ao(VV),
a limit exists on the amount by which ao(HH) may be increased by adding these bound scatterers
without causing ao(VV) to disagree with measurements. This limit is insufficient to account for the
observed values of ao(HH) up to incidence angles of 800 (Plant, 1997, 2003).

While the situations documented here with ao(HH)> ;o(VV) probably relate to an ocean surface
disturbed by current gradients as well as the wind, they clearly require a non-Bragg type of scattering
such as that from steep features associated with breaking waves. It is reasonable to assume that such
processes also occur for an ocean surface that is disturbed only by the wind but to a much lesser
extent. Many researchers studying backscatter from breaking waves have suggested that surface
features resembling dihedral comer reflectors may account for short-lived instances of a,(HH)>
0 (VV) (Wetzel, 1986; Trizna, 1997; Fuchs et al., 1999; Lee et al., 1999; Sletten et al., 2003).
Because of Brewster damping, such structures backscatter to a much lesser extent at VV polarization
than at HH and therefore yield ao(HH) > co(VV). Here we take tentative steps toward a statistical
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model of backscatter from a random distribution of dihedral corner reflectors which may represent
breaking wave effects.
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